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on energy release rate in the linear analysis of an infinite
center-cracked specimen. However, Kibler and Roberts [10]
indicated that an increase in the appareht fracture toughness
with increasing biaxial load was observed experimentally, and
this fact can not be adequately explained by linear fracture
mechanics theory. This leads us to believe the experimentally
observed biaxial effects must be coupled with nonlinearity.
Hilton [11] calculated the plastic stress and/or strain in-
tensity factor for infinite cracked plates subjected to bi-
axial loading. In this work, we analyze a finite center
cracked specimen, with Ramberg-Osgood type stress-strain re-
lation, subjected to biaxial loading, by finite element method
to obtained fracture toughness parameters such as energy re-
lease rate, J-integral, stress intensity factor. Indeed,

the analysis has shown that the biaxial effects on those
fracture toughness parameters are coupled with the nonlinearity

introduced through the stress-strain relations.




2. Stress-Strain Relations

In linear elasticity, the stress-strain relations for a
homogeneous isotropic material can be written in either of

the following forms [12]:

°ij = A €xk cij + 2u Eij i (2.1)
% : A
15 T % %45 T IO v 2 Okk iy e

where X and u are the Lame constants, oij

stress tensor and strain tensor respectively. Introducing

and eij are the

stress deviator sij as follows:

3% 1

(2.2) can be rewritten as:

Beyy = (1% 9) 55, + Loy oyldyy o (2.4)

where E and v are Young's modulus and Poisson's ratio respec-
tively. Adopting the model suggested by Ramberg and Osgood,
we generalize the stress-strain relations to the nonlinear

range as follows:

Begy = (1 vsyy ¢ LyPloosy o 300, sy5 (2.9)

where effective stress Oq is defined as:

2 .3
For convenience sake, we introduce the following nondimension-

alized quantities:




aij z aij/(:Y i (2.7)

;ij = Sij/OY ’ . (2.8)

Ee =0 /oy (2.9)

Eij z Eeij/cY : (2.10)
n-1

& = aoy : (2.11)

Then (2.5) can be rewritten as:

. e syt s BT 5 +3_on-1§'
€ij 5 © T by e i .

In case of simple tension test, namely, 0., = Eby

and all other 45 = 0, we obtain the following nonvanishing

strain components:

=5 +a |, (2.13)

n
€y = €55 % - VO - P[5 . (2.14)

The equations (2.13) and (2.14) could be used to determine the
numerical values of v, @, n experimentally. A typical stress-
strain curve, ;ccording to (2.13), is plotted in Fig. 1 for
reference. In the case of generalized plane stress, the stress-

strain relations can be expressed in the following matrix forms:
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4. The Procedure

f The typical arrangement of the finite element layout

' : with 212 nodal points, i.e., 424 degrees of freedom, and

parremn

377 triangular elements are illustrated in Figs. 4. 5, 76,
If j is the number ol a certain nodal point, then EZj-l and
GZj are the nondimensional displacement of the point in x
and y direction respectively,sz_1 and ?Zj are the corre-

sponding external concentrated force components (nondi-

SSS——————— e ST R

mensionalized) acting on that point (cf. Fig. 7). Assume
the displacement field within each element is linear with
respect to coordinates. This implies the strain, and
accordingly stress, within each element is constant. For
each element let the nodal point displacements (81, strain

field [€], and stress field [0] be represented by

Ex EX
b1 @ =|5, |, (4.1)

xy Oxy ‘

[e]

(1]
o

[3) (4.2)
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then we have
[€] = [B][3) , (4.3)
[o] = [D][e] , (4.4)

where [D] is 3 x 3 matrix as indicated in (2.16), and
50 b. 0 bk 0

[B]-%-K 0 e 0 ; (4.5)

Lo e

2A = det 1 ij ?j 5 (4.6)
1 x5 ¥y

bi = yj = yk ’ Ci - Xj o Xk Y (4.7)

with the other coefficients obtained by a cyclic permutation
of subscripts in the order i, j, k. The stiffness matrix
per unit thickness of this particular triangular element is

obtained as [14]:

(k] = (B]"[D][B] A (4.8)
where A is the area of the element. The governing equation is

finally obtained as:
424

Z Kgy Uy = Tg » B =1,2, ....424 (4.9)
y=1

where the 424 x 424 stiffness matrix is tha sum of 377 local

stiffness matrices.
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Since matrix [D] depends on the effective stress Ee'
so does matrix [K]. Thus, an iteration process has to be
taken to solve the nonlinear matrix equation (4.9). And
also, it is noticed that the principle of superposition
can not be applied. Therefore, for a specifically given
applied stress o and biaxial factor k, we assign a set of
377 trial values for g(I), I = 1,2, ...377, namely, let

g(I) = g*(1) for each triangular element. After solving

(4.9), we have ﬁ: , then we calculate, for I = 1,2, ...377 ,

[E ()] = [B(D][s(D] , (4.10)
[o(1)) = [D(D])le(D)) . (4.11)

Thus, the calculated values of g(I) are obtained as:

: (n-1)/2
g** (1) = T[GL(T) + To(T) - 5 (1) § (1) + 30) (D)] (4.12)
This iteration process will be cqﬁtinued until, for each I,
the percentage difference between g*(I):and g**(I) is below
certain allowable value of error. Aftér the iteration process
is complefed, it is straightforward to calculate G, J, and

other quantities which we are concerned.
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5. Crack Tip Solution

In linear elastic fracture mechanics, the stress inten-
sity factor K is often taken as one of the fracture criteria
since K describes the singularity of the stress field in the
neighborhood of crack tip. For an infinite plate with a
centered line crack subjected to uniform uniaxial tension,

i the stress intensity factor and the energy release rate are

S———

related by Irwin's K-G relation which is represented as [9]:

2
: guK * - ’ (5.1)

where k takes the value (3-4v) for case of plane strain and

(3-v)/(1+v) for case of generalized plane stress. In the
| % case of nonlinearity being introduced through stress-strain
;' E relation Rice and Rosengren [3], Hutchinson [1,2], Hilton
and Hutchinson [?] obtained the crack tip solution analyti-
cally. In this section we recall some of those results in

; plane stress as follows (cf.[1]):

-1
& LR ‘
2 KU T aij(e) é (5.2)
=N
; ¥ o WeL
€4y " Ke T eﬁ(e) & (5.3)

n : ¥
where Ke - R& and the dimensionless functions of 6, %4 and

Eij’ are detailed in [1,2]. 1In the crack tip region the di-
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mensionless J-integral is obtained as a function of the di-
mensionless stress intensity factor KU:
n+l
a K& e ¥ E: (5.4)
where € depends on the material hardening coefficient n.

In plane stress c_ takes the typical values of 3.86, 3.41,

n
3.03, 2.87 for n = 3,5,9,13 respectively. However, Hutchinson
[{1], based upon the assumption of small scale yielding and the
path independence of J-integral, set the left-hand side of
eqn. (5.4) equal to the J value obtained in the linear and uni-
axial case. In this study, we do not restrict ourself in thke
range of small scale yielding and moreover we are interested
in the biaxial effects on a finite center-cracked specimen.

Therefore, once the finite-element analysis has been completed,

we calculate the following integral,
Ty
along a curve P% traversing counterclockwise in the first

quadrant R and set

+1

n
2a Ka o~ [(U dy - o33 n Ui % ds) (5.6)

Ty
to obtain K& and Ke as a consequence.
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6. Results and Discussion

Given a specific center-cracked specimen, we have a set of
material constants E, v, a, and n and a set of geometric parameters
of a finite rectangular plate, namely, length 2L, width 2w, and
crack size 2a. Attention is focused on case of generalized plane

stress with uniform biaxial stresses °y it o8 N ko being applied

along y = #L, x = +W respectively. The following nondimensionalized

quantities are introduced:

°ij = oij / oy - (6.1)
Eij = Eeyy f o 4 (6.2)
e n-1

@ = aoy 5 (6.3)
c=a/wW ’ (6.4)
L =L/ W A (6.5)
X=x/W e (6.6)
Y=y /W ; (6.7)

where the yield stress oy is obtained according to the usual

engineering definition, namely, in simple tension test, when stress

o is equal to o, , strain ¢ is equal to “Y/E + 0.002 (cf. Sechler

oy = (0.002 E/a)}/D (6.8)

Then, in the finite-element computer program, (2.16) is used as the

stress-strain relation and the boundary value problem is solved for




!
¥
|

- 37 -

the region R = [x, ¥ |0 < x < 1, 0< y <t] according to the boundary
conditions specified by (3.7 - 3.11). After the grand matrix equation
(4.9) is solved by iteration, the following quantities will be cal-
culated numerically:

Complementary and strain energy densities (dimensionless) in the I-th

triangular element :

O o (1% =% 1-2y =2 a__ — n+l

s Wt o oty B st Dot i S ik

ol R J-2y -2 o e Y

Uy =iy # T st wl % (6.10)
J~integral (dimensionless) along any specified curve I:

J = 2 JE (U ay - °ij nj ui'; ds ) (6.11)

1/2

Stress intensity tactor (dimensionless). :

B .=/ Sy VI ; (6.12)

After that, the nonlinear energy release rate é. J-integral J, stress

intensity factor K, and strain intensity factor K are obtained as

2Wo d(z Ag Vi)

G (fixed load) = —g— —g= . (6.13)
Mo, d(Ik, O.)

" (+]

G (fixed grip) = - —'3- L (6.14)

TV




R e
i | Ve ! _
{ ' BeFy o , (6.15)
i
i
= 1/(n+l) =
Ko oYW Ko . (6.16)
i a n
| 4 W ——
3 Ke E K . (§.17)
where KI is the dimensionless area of the I-th triangular element.

For illustrative purpose, we fix a=0.02, n=13, v=0.33, 2=2.5
1 in this work and plot nonlinear energy release rate é as function
of applied stress o for two cases, k=0 and k=-3, at c=0.5 in Fig.8
which shows significant biaxial effect. Ih other words, & in the

tension-compression case is higher than that in the uniaxial case.
In Fig.9, &, for different values of k, normalized by the linear

and uniaxial energy release rate E, is plotted against the applied

stress. It is noticed that for o/oY being less than 0.3, the values

of & decrease a8 biaxial load factor k increases, however, at higher
stress, one notices that'a(k-3) becomes even larger than &(k--l).

We believe this is due to the nonlinear1£y~hainly caused by the large
stress ko (-1'2°Y) being applied along x=+W. Also the nonlinear effects
‘on energy release rate are remarkable, The values of J-integral as
functions of biaxial load factor k are plotted in Figs. 10-11 from
which we notice that the general characteristics and the numerical

P values of J-integral are similar to those of nonlinear energy release

rate, However, we do detect that the numerical difference between G

g
A L i e
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and J increases as applied stress ¢ increases, especially at larger
k values (positive or negative). From Fig.12 we see that G is about
7.8% lower than J when k=-3 and it is about 4.4% higher than J when

k=3 at o/0 = 0.4 and c=0.505. The biaxial effect on stress intensity

factor is shown in Fig.13 and,relatively speaking, it is much less
than that on J-integral and energy release rate because, according

to egn. (5.4), we have the following relation:
Ky (k) /K, (k=0) = [3(k)/3(k=0)]*/ ™+ (6.18)

The biaxial effect on strain intensity factor is shown in Fig.14.
Because the dimension of linear stress intensity factor is different
than that of nonlinear stress intensity factor, one can not compare
these two quantities directly. Therefore we recall the definition

of small scale yield stress intensity factor (dimensionless) [1]

1/(n+1) :

e 2 e
K = ((o/oY) C1/ucn] (6.19)

ssy

and plot the percentage difference between KU and Kss against c/aY

Y
for k = ~3,0,3 in Fig.15. Also we found that even when 0/0y+0, there

is still a 2% difference between xc and Kssy and this difference

is due to the fact that the linear value of J~integral for an in-
finite center-cracked specimen has been used for the right hand side
of egn.(5.4).
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